中考数学:函数知识精讲

时间:2025-07-08

篇1:中考数学:函数知识精讲

二、例题分析:

例4、如图,锐角三角形ABC的边长BC=6,面积为12,P在AB上,Q在AC上,且PQ∥BC,正方形PQRS的边长为x,正方形PQRS与△ABC的公共部分的面积为y。

(1)当SR恰落在BC上时,求x,

(2)当SR在△ABC外部时,求y与x间的函数关系式;

(3)求y的最大值。

略解:(1)由已知,△ABC的高AD=4。

∵△APQ∽△ABC,(如图一)

设AD与PQ交于点E

(2)当SR在△ABC的外部时, 同样有,

则,即AE=

y=EDPQ=x(4-)=-2+4x()

(3)∵a=-0,y=-其中,

当x=3时,y取得最大值6.

说明:此例将线段PQ的长设为x,正方形PQRS与△ABC的公共部分的面积设为y,寻找它们之间的函数关系.注意自变量的取值范围;在y取最大值时,要注意顶点(3,6)的横坐标是否在取值范围内.

篇2:中考数学:函数知识精讲

二、例题分析:

例5.( 潍坊市中考题)某公园草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4m加设不锈钢管(如图一)作成的立柱。为了计算所需不锈钢管立柱的总长度,设计人员利用图二所示的坐标系进行计算。

(1)求该抛物线的解析式; (2)计算所需不锈钢管立柱的总长度。

分析:图中给出了一些数量,并已经过护栏中心建立了平面直角坐标系, 所以求二次函数的解析式关键是找到一些条件建立方程组。因为对称轴是 y轴,所以b=0,可以设二次函数为y=ax2+c.

解:(1)在如图所示坐标中,设函数解析式为y=ax2+c,B点坐标为(0,0.5),C点坐标为(1,0)。

分别代入y=ax2+c得:

,解得

抛物线的解析式为:y=-0.5x2+0.5

(2)分别过AC的五等分点,C1,C2,C3,C4,作x轴的垂线,交抛物线于B1,B2,B3,B4,则C1B1,C2B2,C3B3,C4B4的长就是一段护栏内的四条立柱的长,点C3,C4的坐标为(0.2,0)、(0.6,0),则B3,B4点的横坐标分别为x3=0.2,x4=0.6.

将x3=0.2和x4=0.6分别代入

y=-0.5x2+0.5得y3=0.48,y4=0.32

由对称性得知,B1,B2点的纵坐标:y1=0.32,y2=0.48

四条立柱的长为:C1B1=C4B4=0.32(m)

C2B2=C3B3=0.48(m)

所需不锈钢立柱的总长为

(0.32+0.48)250=80(m)。

答:所需不锈钢立柱的总长为80m。

篇3:中考数学:函数知识精讲

二、例题分析:

例1.已知P(m, n)是一次函数y=-x+1图象上的一点,二次函数y=x2+mx+n的图象与x轴两个交点的横坐标的平方和为1,问点N(m+1, n-1)是否在函数y=-图象上。

分析:P(m, n)是图象上一点,说明P(m, n)适合关系式y=-x+1,代入则可得到关于m,n的一个关系,二次函数y=x2+mx+n与x轴两个交点的横坐标是方程x2+mx+n=0的两个根,则x1+x2=-m, x1x2=n, 由平方和为1即x12+x22=(x1+x2)2-2x1x2=1,又可得到关于m, n的一个关系,两个关系联立成方程组,可解出m, n,这种利用构造方程求函数系数的思想最为常见。

解:∵P(m,n)在一次函数y=-x+1的图象上,

n=-m+1, m+n=1.

设二次函数y=x2+mx+n的图象与x轴的两个交点的横坐标为x1,x2,

x12+x22=1,

又∵x1+x2=-m, x1x2=n,

(x1+x2)2-2x1x2=1, 即m2-2n=1

由解这个方程组得:或。

把m=-3, n=4代入x2+mx+n=0,

x2-3x+4=0, 0.

m=-3, n=4(舍去).

把m=1, n=0代入x2+mx+n=0,

x2+x=0, 0

点N(2,-1),

把点N代入y=-,当x=2时,y=-3-1.

点N(2,-1)不在图象y=-上。

说明:这是一道综合题,包括二次函数与一次函数和反比例函数,而且需要用到代数式的恒等变形,与一元二次方程的根与系数关系结合,求出m、n值后,需检验判别式,看是否与x轴有两个交点。当m=-3, n=4时,0,所以二次函数与x轴无交点,与已知不符,应在解题过程中舍去。是否在y=-图象上,还需把点(2,-1)代入y=-,满足此函数解析式,点在图象上,否则点不在图象上。

篇4:中考数学:函数知识精讲

注意事项总结:

3.对于二次函数解析式,除了掌握一般式即:y=ax2+bx+c((a0)之外,还应掌握顶点式y=a(x-h)2+k及两根式y=a(x-x1)(x-x2),(其中x1,x2即为图象与x轴两个交点的横坐标)。当已知图象过任意三点时,可设一般式求解;当已知顶点坐标,又过另一点,可设顶点式求解;已知抛物线与x轴交点坐标时,可设两根式求解。总之,在确定二次函数解析式时,要认真审题,分析条件,恰当选择方法,以便运算简便。

4.二次函数y=ax2与y=a(x-h)2+k的关系:图象开口方向相同,大小、形状相同,只是位置不同。y=a(x-h)2+k图象可通过y=ax2平行移动得到。当h0时,向右平行移动|h|个单位;h0向左平行移动|h|个单位;k0向上移动|k|个单位;k0向下移动|k|个单位;也可以看顶点的坐标的移动, 顶点从(0,0)移到(h,k),由此容易确定平移的方向和单位。

篇5:中考数学:函数知识精讲

篇5:中考数学:函数知识精讲

注意事项总结:

1.关于点的坐标的求法:

方法有两种,一种是直接利用定义,结合几何直观图形,先求出有关垂线段的长,再根据该点的位置,明确其纵、横坐标的符号,并注意线段与坐标的转化,线段转换为坐标看象限加符号,坐标转换为线段加绝对值;另一种是根据该点纵、横坐标满足的条件确定,例如直线y=2x和y=-x-3的交点坐标,只需解方程组就可以了。

2.对解析式中常数的认识:

一次函数y=kx+b (k0)、二次函数y=ax2+bx+c(a0)及其它形式、反比例函数y=(k0),不同常数对图像位置的影响各不相同,它们所起的作用,一般是按其正、零、负三种情况来考虑的,一定要建立起图像位置和常数的对应关系。

篇6:中考数学:函数知识精讲

二、例题分析:

例2.直线 y=-x与双曲线y=-的两个交点都在抛物线y=ax2+bx+c上,若抛物线顶点到y轴的距离为2,求此抛物线的解析式。

分析:两函数图象交点的求法就是将两函数的解析式联立成方程组,方程组的解既为交点坐标。

解:∵直线y=-x与双曲线y=-的交点都在抛物线y=ax2+bx+c上,

由解这个方程组,得x=1.

当x=1时,y=-1.

当x=-1时,y=1.

经检验:都是原方程的解。

设两交点为A、B,A(1,-1),B(-1,1)。

又∵抛物线顶点到y轴的距离为2, 抛物线的对称轴为直线x=2或x=-2,

当对称轴为直线x=2时,

设所求的抛物线解析式为y=a(x-2)2+k,又∵过A(1,-1),B(-1,1),

解方程组得

抛物线的解析式为y=(x-2)2-

即 y=x2-x-.

当对称轴为直线x=-2时,设所求抛物线解析式为y=a(x+2)2+k,

则有解方程组得,

抛物线解析式为y=-(x+2)2+

y=-x2-x+.

所求抛物线解析式为:y=x2-x-或y=-x2-x+。

说明:在求直线和双曲线的交点时,需列出方程组,通过解方程组求出x, y值,双曲线的解析式为分式方程,所以所求x, y值需检验。抛物线顶点到y轴距离为2,所以对称轴可在y轴左侧或右侧,所以要分类讨论,求出抛物线的两个解析式。

篇7:中考数学:函数知识精讲

中考数学知识点:函数

一、函数

(1)定义:设在某变化过程中有两个变量x、y,对于x的每一个值,y都有唯一的值与之对应,那么就说x是自变量,y是因变量,此时,也称y是x的函数。

(2)本质:一一对应关系或多一对应关系。

有序实数对平面直角坐标系上的点

(3)表示方法:解析法、列表法、图象法。

(4)自变量取值范围:

对于实际问题,自变量取值必须使实际问题有意义;

对于纯数学问题,自变量取值必须保证函数关系式有意义:

①分式中,分母=?0;

②二次根式中,被开方数≥0;

③整式中,自变量取全体实数;

④混合运算式中,自变量取各解集的公共部份。

二、正比例函数与反比例函数

两函数的异同点

二、一次函数(图象为直线)

(1)定义式:y=kx+b (k、b为常数,k=?0);自变量取全体实数。

(2)性质:

①k>0,过第一、三象限,y随x的增大而增大;

k<0,过第二、四象限,y随x的增大而减小。

②b=0,图象过(0,0);

b>0,图象与y轴的交点(0,b)在x轴上方;

b<0,图象与y轴的交点(0,b)在x轴下方。

三、二次函数(图象为抛物线)

(1)自变量取全体实数

一般式:y=ax2+bx+c(a、b、c为常数,a=?0),其中(0,c)为抛物线与y轴的交点;

顶点式:y=a(x—h)2+k (a、h、k为常数,a=?0),其中(h,k)为抛物线顶点;

h=-,k=零点式:y=a(x—x1)(x—x2)(a、x1、x2为常数,a=?0)其中(x1,0)、(x2,0)为抛物线与x轴的交点。x1、x2= (b2-4ac≥0)

(2)性质:

①对称轴:x=-或x=h;

②顶点:(-,)或(h,k);

③最值:当x=-时,y有最大(小)值,为 或当x=h时,y有最大(小)值,为k;

篇8:中考数学:函数知识精讲

一、选择题

5.(o新疆,第6题5分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()

A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点

考点:二次函数的性质.

专题:常规题型.

分析:根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为(1,2),对称轴为直线x=1,从而可判断抛物线与x轴没有公共点.

解答:解:二次函数y=(x﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.

故选C.

点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a0)的顶点式为y=a(x﹣)2+,的顶点坐标是(﹣,),对称轴直线x=﹣b2a,当a>0时,抛物线y=ax2+bx+c(a0)的开口向上,当a<0时,抛物线y=ax2+bx+c(a0)的开口向下.

篇9:中考数学:函数知识精讲

篇9:中考数学:函数知识精讲

一、选择题

3.(四川资阳,第10题3分)二次函数y=ax2+bx+c(a0)的图象如图,给出下列四个结论:

①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m﹣1),

其中正确结论的个数是()

A.4个B.3个C.2个D.1个

考点:二次函数图象与系数的关系.

分析:利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.

解答:解:∵抛物线和x轴有两个交点,

b2﹣4ac>0,

4ac﹣b2<0,①正确;

∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,

抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,

把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,

4a+c>2b,②错误;

∵把(1,0)代入抛物线得:y=a+b+c<0,

2a+2b+2c<0,

∵b=2a,

3b,2c<0,③正确;

∵抛物线的对称轴是直线x=﹣1,

y=a﹣b+c的值最大,

即把(m,0)(m0)代入得:y=am2+bm+c<a﹣b+c,

am2+bm+b<a,

即m(am+b)+b<a,④正确;

即正确的有3个,

故选B.

点评:此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法.同时注意特殊点的运用.

篇10:中考数学:函数知识精讲

一、选择题

2.(o广西贺州,第10题3分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()

A.B.C.D.

考点:二次函数的图象;一次函数的图象;反比例函数的图象.

分析:先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.

解答:解:∵抛物线开口向上,

a>0,

∵抛物线的对称轴为直线x=﹣>0,

b<0,

∵抛物线与y轴的交点在x轴下方,

c<0,

一次函数y=cx+的图象过第二、三、四象限,反比例函数y=分布在第二、四象限.

故选B.

点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.

篇11:中考数学:函数知识精讲

一、选择题

1.(o广东,第10题3分)二次函数y=ax2+bx+c(a0)的大致图象如图,关于该二次函数,下列说法错误的是()

A.函数有最小值B.对称轴是直线x=

C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0

考点:二次函数的性质.

分析:根据抛物线的开口方向,利用二次函数的性质判断A;

根据图形直接判断B;

根据对称轴结合开口方向得出函数的增减性,进而判断C;

根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.

解答:解:A、由抛物线的开口向下,可知a<0,函数有最小值,正确,故本选项不符合题意;

B、由图象可知,对称轴为x=,正确,故本选项不符合题意;

C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故本选项不符合题意;

D、由图象可知,当﹣1<x<2时,y<0,错误,故本选项符合题意.

故选D.

点评:本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.

篇12:中考数学:函数知识精讲

一、选择题

6.(o舟山,第10题3分)当﹣21时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()

A.﹣B.或C.2或D.2或﹣或

考点:二次函数的最值

专题:分类讨论.

分析:根据对称轴的位置,分三种情况讨论求解即可.

解答:解:二次函数的对称轴为直线x=m,

①m<﹣2时,x=﹣2时二次函数有最大值,

此时﹣(﹣2﹣m)2+m2+1=4,

解得m=﹣,与m<﹣2矛盾,故m值不存在;

②当﹣21时,x=m时,二次函数有最大值,

此时,m2+1=4,

解得m=﹣,m=(舍去);

③当m>1时,x=1时,二次函数有最大值,

此时,﹣(1﹣m)2+m2+1=4,

解得m=2,

综上所述,m的值为2或﹣.

故选C.

点评:本题考查了二次函数的最值问题,难点在于分情况讨论.

篇13:中考数学:函数知识精讲

篇13:中考数学:函数知识精讲

一、选择题

8.(o孝感,第12题3分)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:

①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.

其中正确结论的个数为()

A.1个B.2个C.3个D.4个

考点:二次函数图象与系数的关系;抛物线与x轴的交点

专题:数形结合.

分析:由抛物线与x轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=﹣1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(﹣1,2)得a﹣b+c=2,由抛物线的对称轴为直线x=﹣=1得b=2a,所以c﹣a=2;根据二次函数的最大值问题,当x=﹣1时,二次函数有最大值为2,即只有x=1时,ax2+bx+c=2,所以说方程ax2+bx+c﹣2=0有两个相等的实数根.

解答:解:∵抛物线与x轴有两个交点,

b2﹣4ac>0,所以①错误;

∵顶点为D(﹣1,2),

抛物线的对称轴为直线x=﹣1,

∵抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,

抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,

当x=1时,y<0,

a+b+c<0,所以②正确;

∵抛物线的顶点为D(﹣1,2),

a﹣b+c=2,

∵抛物线的对称轴为直线x=﹣=1,

b=2a,

a﹣2a+c=2,即c﹣a=2,所以③正确;

∵当x=﹣1时,二次函数有最大值为2,

即只有x=1时,ax2+bx+c=2,

方程ax2+bx+c﹣2=0有两个相等的实数根,所以④正确.

故选C.

点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.

篇14:中考数学:函数知识精讲

一、选择题

7.(o毕节地区,第11题3分)抛物线y=2x2,y=﹣2x2,共有的性质是()

A.开口向下B.对称轴是y轴

C.都有最低点D.y随x的增大而减小

考点:二次函数的性质

分析:根据二次函数的性质解题.

解答:解:(1)y=2x2开口向上,对称轴为y轴,有最低点,顶点为原点;

(2)y=﹣2x2开口向下,对称轴为y轴,有最高点,顶点为原点;

(3)y=x2开口向上,对称轴为y轴,有最低点,顶点为原点.

故选B.

点评:考查二次函数顶点式y=a(x﹣h)2+k的性质.二次函数y=ax2+bx+c(a0)的图象具有如下性质:

①当a>0时,抛物线y=ax2+bx+c(a0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.

②当a<0时,抛物线y=ax2+bx+c(a0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.

篇15:中考数学:函数知识精讲

一、选择题

9.(o台湾,第26题3分)已知a、h、k为三数,且二次函数y=a(x﹣h)2+k在坐标平面上的图形通过(0,5)、(10,8)两点.若a<0,0<h<10,则h之值可能为下列何者?()

A.1B.3C.5D.7

分析:先画出抛物线的大致图象,根据顶点式得到抛物线的对称轴为直线x=h,由于抛物线过(0,5)、(10,8)两点.若a<0,0<h<10,则点(0,5)到对称轴的距离大于点(10,8)到对称轴的距离,所以h﹣0>10﹣h,然后解不等式后进行判断.

解:∵抛物线的对称轴为直线x=h,

而(0,5)、(10,8)两点在抛物线上,

h﹣0>10﹣h,解得h>5.

故选D.

点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.

版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

Top